Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.07.548077

ABSTRACT

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, the S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production of the recombinant S trimer and, more importantly, its immunogenicity, suggesting that these two parameters are related. However, S-2P still shows some molecular instability and it is produced with low yield. Thus, S-2P production can be further optimized. Here we described a novel set of mutations identified by molecular modelling and located in the S2 region of the Spike that increase S-2P production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 spike mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2846684.v1

ABSTRACT

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we described a novel V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity was similar to S-2P in K18-hACE2 mice and golden Syrian hamsters, and superior to a monomeric RBD. Immunization with S-V987H, but not with S-2P or RBD, conferred full protection against severe disease in both animal models after SARS-CoV-2 challenge (D614G and B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice showed a faster tissue viral clearance than RBD- or S-2P-vaccinated animals. Thus, S-V987H protein provides an alternative to S-2P for future SARS-CoV-2 vaccines development.


Subject(s)
Coronavirus Infections , COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.20.524748

ABSTRACT

In the present study we report the functional and structural characterization of 17T2, a new highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody (mAb) isolated from a convalescent COVID-19 individual infected during the first wave of the COVID-19 pandemic. 17T2 is a class 1 VH1-58/{kappa}3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA memory B cell and developed as a human recombinant IgG1. Functional characterization revealed that 17T2 mAb has a high and exceptionally broad neutralizing activity against all SARS-CoV-2 spike variants tested, including BQ.1.1. Moreover, 17T2 mAb has in vivo prophylactic activity against Omicron BA.1.1 infection in K18-hACE2 transgenic mice. 3D reconstruction from cryogenic-electron microscopy (cryo-EM) showed that 17T2 binds the Omicron BA.1 spike protein with the RBD domains in up position and recognizes an epitope overlapping with the receptor binding motif, as it is the case for other structurally similar neutralizing mAbs, including S2E12. Yet, unlike S2E12, 17T2 retains its high neutralizing activity against all Omicron sublineages tested, probably due to a larger contact area with the RBD, which could confer a higher resilience to spike mutations. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 mAb as a potential candidate for future therapeutic and prophylactic interventions.


Subject(s)
COVID-19
4.
Duazary ; 19(2):85-94, 2022.
Article in Spanish | ProQuest Central | ID: covidwho-1934854

ABSTRACT

At present it is going through a global pandemic that forced the human being to adopt different ways of relating and doing their daily tasks, for that reason we wanted to make a comparison of the depressive symptoms of caregivers, the perception of the function family and internalized and externalized problems in children aged two to five years, in three groups interviewed at three times: 1) before quarantine by COVID-19 in Colombia, 2) during the first three weeks of quarantine and 3 ) from the fourth to the sixth week of quarantine. The questionnaires used measured: sociodemographic characteristics, the perception of the impact of COVID-19 on the lives of individuals, the perception of family-function, depressive symptoms of caregivers, and the behavior and emotional state of children. Aggressive behavior (Mean = 8,79;p = 0,000), anxiety (3,85;p = 0,025) and attention problems (2,53;p = 0,023) were found to be higher in the third group studied. The perception of family function was more positive in the third group (Average: 14,06;p = 0,006).Alternate :La cuarentena por la pandemia de COVID-19, trajo consigo diversos retos para las familias con niños pequeños. Muchos niños dejaron de ir al parque, a los centros de desarrollo infantil, a donde los abuelos. Por esa razón, el objetivo de este estudio fue comparar los síntomas depresivos de cuidadores(as), la percepción de la función familiar y los problemas internalizados y externalizados en niños(as) de dos a cinco años, en tres grupos entrevistados en tres momentos: 1) antes de la cuarentena por COVID-19 en Colombia, 2) durante las tres primeras semanas de cuarentena y 3) de la cuarta a la sexta semana de cuarentena. Los cuestionarios usados midieron: características sociodemográficas, la percepción del impacto del COVID-19 en la vida de los individuos, la percepción de la función-familiar, los síntomas depresivos de cuidadores, y el comportamiento y estado emocional de los niños. Se halló que el comportamiento agresivo (Media= 8,79;p=0,000), la ansiedad (3,85;p=0,025) y los problemas de atención (2,53;p=0,023) fueron más altos en el tercer grupo estudiado. La percepción de la función familiar fue más positiva en el tercer grupo (Media: 14,06;p=0,006).

5.
Eur Geriatr Med ; 13(3): 719-724, 2022 06.
Article in English | MEDLINE | ID: covidwho-1653868

ABSTRACT

The COVID-19 pandemic has severely affected older adults and brought about unprecedented challenges to geriatricians. We aimed to evaluate the experiences of early career geriatricians (residents or consultants with up to 10 years of experience) throughout Europe using an online survey. We obtained 721 responses. Most of the respondents were females (77.8%) and residents in geriatric medicine (54.6%). The majority (91.4%) were directly involved in the care of patients with COVID-19. The respondents reported moderate levels of anxiety and feelings of being overloaded with work. The anxiety levels were higher in women than in men. Most of the respondents experienced a feeling of a strong restriction on their private lives and a change in their work routine. The residents also reported a moderate disruption in their training and research activities. In conclusion, early career geriatricians experienced a major impact of COVID-19 on their professional and private lives.


Subject(s)
COVID-19 , Geriatrics , Aged , COVID-19/epidemiology , Female , Geriatricians/education , Humans , Male , Pandemics , SARS-CoV-2
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.22.469117

ABSTRACT

Since the genetic sequence of SARS-CoV-2 became available in January 2020, new vaccines have been developed at an unprecedented speed. The current vaccines have been directly associated with a decline in new infection rates, prevention of severe disease and an outstanding decrease in mortality rates. However, the pandemic is still far from being over. New Variants of Concern (VoCs) are continuously evolving. Thus, it is essential to develop accessible second-generation COVID-19 vaccines against known and future VoCs to mitigate the current pandemic. Here, we provide preclinical data showing the immunogenicity, efficacy, and safety results in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine candidate (PHH-1V) which consists of a novel RBD fusion heterodimer containing the B.1.1.7 (alpha) and B.1.351 (beta) variants of SARS-CoV-2, formulated with an oil-based adjuvant equivalent to MF59C.1. BALB/c and K18-hACE2 mice were immunized with different doses of recombinant RBD fusion heterodimer, following a two-dose prime-and-boost schedule. Upon 20 g RBD fusion heterodimer/dose immunization, BALB/c mice produced RBD-binding antibodies with neutralising activity against the alpha, beta, gamma, and delta variants. Furthermore, vaccination elicited robust activation of CD4+ and CD8+ T cells with early expression of Th1 cytokines upon in vitro restimulation, along with a good tolerability profile. Importantly, vaccination with 10 g or 20 g RBD fusion heterodimer/dose conferred 100% efficacy preventing mortality and bodyweight loss upon SARS-CoV-2 challenge in K18-hACE2 mice. These findings demonstrate the feasibility of this novel recombinant vaccine strategy, allowing the inclusion of up to 2 different RBD proteins in the same vaccine. Most importantly, this new platform is easy to adapt to future VoCs and has a good stability profile, thus ensuring its global distribution.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.22.21265309

ABSTRACT

Objectives: We investigated the relative contribution of occupational (vs. community) exposure for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among employees of a university-affiliated long-term care facility (LTCF), during the 1st pandemic wave in Switzerland (March to June 2020). Methods: We performed a nested analysis of a seroprevalence study among all volunteering LTCF staff to determine community and nosocomial risk factors for SARS-CoV-2 seropositivity using modified Poison regression. We also combined epidemiological and genetic sequencing data from a coronavirus disease 2019 (COVID-19) outbreak investigation in a LTCF ward to infer transmission dynamics and acquisition routes of SARS-CoV-2, and evaluated strain relatedness using a maximum likelihood phylogenetic tree. Results: Among 285 LTCF employees, 176 participated in the seroprevalence study, of whom 30 (17%) were seropositive for SARS-CoV-2. Most (141/176, 80%) were healthcare workers (HCWs). Risk factors for seropositivity included exposure to a COVID-19 inpatient (adjusted prevalence ratio [aPR] 2.6; 95%CI 0.9-8.1) and community contact with a COVID-19 case (aPR 1.7; 95%CI 0.8-3.5). Among 18 employees included in the outbreak investigation, the outbreak reconstruction suggests 4 likely importation events by HCWs with secondary transmissions to other HCWs and patients. Conclusions: These two complementary epidemiologic and molecular approaches suggest a substantial contribution of both occupational and community exposures to COVID-19 risk among HCWs in LTCFs. These data may help to better assess the importance of occupational health hazards and related legal implications during the COVID-19 pandemic.


Subject(s)
COVID-19 , Agricultural Workers' Diseases , Severe Acute Respiratory Syndrome
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.03.454861

ABSTRACT

SARS-CoV-2 variants display enhanced transmissibility and/or immune evasion and can be generated in humans or animals, like minks, thus generating new reservoirs. The continuous surveillance of animal susceptibility to new variants is necessary to predict pandemic evolution. In this study we demonstrate that, compared to the B.1 SARS-CoV-2 variant, K18-hACE2 transgenic mice challenged with the B.1.351 variant displayed a faster progression of infection. Furthermore, we also report that B.1.351 can establish infection in wildtype mice, while B.1 cannot. B.1.351-challenged wildtype mice showed a milder infection than transgenic mice, confirmed by detectable viral loads in oropharyngeal swabs and tissues, lung pathology, immunohistochemistry and serology. In silico models supported these findings by demonstrating that the Spike mutations in B.1.351 resulted in increased affinity for both human and murine ACE2 receptors. Overall, this study highlights the plasticity of SARS-CoV-2 animal susceptibility landscape, which may contribute to viral persistence and expansion.

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.07.425729

ABSTRACT

Reinfections with SARS-CoV-2 have already been documented in humans, although its real incidence is currently unknown. Besides having great impact on public health, this phenomenon raises the question if immunity generated by a single infection is sufficient to provide sterilizing/protective immunity to a subsequent SARS-CoV-2 re-exposure. The Golden Syrian hamster is a manageable animal model to explore immunological mechanisms able to counteract COVID-19, as it recapitulates pathological aspects of mild to moderately affected patients. Here, we report that SARS-CoV-2-inoculated hamsters resolve infection in the upper and lower respiratory tracts within seven days upon inoculation with the Cat01 (G614) SARS-CoV-2 isolate. Three weeks after primary challenge, and despite high titers of neutralizing antibodies, half of the animals were susceptible to reinfection by both identical (Cat01, G614) and variant (WA/1, D614) SARS-CoV-2 isolates. However, upon re-inoculation, only nasal tissues were transiently infected with much lower viral replication than those observed after the first inoculation. These data indicate that a primary SARS-CoV-2 infection is not sufficient to elicit a sterilizing immunity in hamster models but protects against lung disease.


Subject(s)
COVID-19 , Lung Diseases , Infections
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.22.423939

ABSTRACT

While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. Author summary Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


Subject(s)
Coronavirus Infections , Nose Diseases
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.23.395301

ABSTRACT

ABSTRACT While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


Subject(s)
Coronavirus Infections , Nose Diseases
SELECTION OF CITATIONS
SEARCH DETAIL